If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25=-16t^2+30
We move all terms to the left:
25-(-16t^2+30)=0
We get rid of parentheses
16t^2-30+25=0
We add all the numbers together, and all the variables
16t^2-5=0
a = 16; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·16·(-5)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*16}=\frac{0-8\sqrt{5}}{32} =-\frac{8\sqrt{5}}{32} =-\frac{\sqrt{5}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*16}=\frac{0+8\sqrt{5}}{32} =\frac{8\sqrt{5}}{32} =\frac{\sqrt{5}}{4} $
| y+120+5+160-35=180 | | x^2/(0.1-x)=10^-4 | | 3q-48=33 | | 20=3(u+8)-5u | | 0=7/((x-3^3) | | 10=y+48/8 | | ((x-5)+(2x-3))/2=x | | (1/9)^3t+5=(1/243)^t-6 | | 1/4(8x+36)-10=-4/5(20x-10) | | 4.2x-4.14=7.2 | | -2+.25x=50 | | (2+(9x+4))/2=4x+4 | | 8x^2–47x–63=0 | | Y=-2x-9= | | 3(x+)=8x | | 154=-4(8+2r) | | j-84/3=3 | | -2x+1/4x=50 | | 36=7a-6-10a | | 11/4=x/6.5 | | 100x-12=8x+45 | | (n-2)*180=150 | | 27x+51=84 | | w=54-(w+9) | | 3=f-64/7 | | 19x-(2x-5)=73 | | 3(x-5)=2(2x+5) | | 2x-1-9=10x-5 | | 0.75=r/25.2 | | 13.66=h+4.88 | | 0.75=r÷25.2 | | -0.75=r÷25.2 |